Pilot-scale Investigation of Heat Flux and Radiation from an Oxy-coal Flame

Part 1: Development of Instrument Models

Jennifer Spinti, Oscar Diaz-Ibarra, Ignacio Preciado, Teri Draper, Kaitlyn Scheib, Stan Harding, Eric Eddings, Terry Ring, Phillip J. Smith University of Utah, Institute for Clean and Secure Energy

Andrew Fry

Brigham Young University, Department of Chemical Engineering

U.S. Department of Energy, Agreement # DE-NA0002375

American Flame Research Committee Meeting, September 13th, 2016

Presentation Road Map

- Program objective, hierarchy and task objective
- Review of experimental quantities of interest
- New measurement devices with instrument models
 - Heat transfer surfaces
 - Wall thermocouples
 - Radiometers
- Example data set
- Summary & conclusions

Project Objective

Implementation of exascale computing with V&V/UQ to more rapidly deploy a new technology for providing low cost, low emission electric power generation

V&V/UQ – Verification & Validation with Uncertainty Quantification

Ultimate goal to design a next-generation 350 MWe oxy-coal boiler

Program Hierarchy

1.5 MW pulverized coal furnace (L1500)

Task Objectives

- Rework furnace measurement devices to accomplish the following:
 - Reduce the impact of measurement on the quantity of interest
 - Evaluate the relationship between the measured value and the quantity of interest
 - Simplify
 - Quantify through mathematical relationships (Instrument Model)
 - Assign value and uncertainty to the quantity of interest

Quantities of Greatest Interest

- Heat removal through cooling surfaces
- Refractory temperatures at the flue gas interface
- Heat flux through the refractory walls
- Radiative intensity

Measuring Heat Removal Through Cooling Surfaces

Cooling Coils and Panels

 Heat removal is determined by measuring the mass flow of water and the temperature of the water in and out

$$Q = \dot{m}_w \cdot c_p (T_O - T_I)$$

Measurement is very sensitive to particle deposition

Cooling Coils and Panels

Multiple depth thermocouples placed in the hot-side plate for heat flux measurements

2 thermocouple sets / heat exchanger

8 total heat flux measurements

Cooling Coils and Panels

Cooling panel cross section

Outside plate, 304 SS Baffled water channel Water flow Inside plate, 304 SS Flame

Thermocouple cross section

Cooling Coils and Panels Instrument Model

Multi-depth thermocouple mathematical description:

Temperature profile to the thermocouple sheath

$$q = k_{ref} \frac{\left(T_1 - T_2\right)}{\left(X_1 - X_2\right)} \qquad T_s = T_1 + q \left(\frac{X_1}{K_{ref}}\right)$$

Assumption: The 1/16" thermocouple does not impact heat flux

Temperature profile within the thermocouple to bead

$$T5 = T1 - q \left[\left(\frac{X_{Sil}}{K_{Sil}} \right) + \left(\frac{X_{inc}}{K_{inc}} \right) + \left(\frac{X_{MgO}}{K_{MgO}} \right) \right]$$

Assumption: Flux through plate = flux through thermocouple

Energy balance mathematical description:

$$Q = \dot{m}_w \cdot c_p (T_O - T_I)$$

Quantifiable sources of error:

- Standard error in type-k thermocouple bead
- Variability in thermocouple set depth measurement
- Variability in material thermal properties
- Error in flow rate measurement

Measuring Wall Temperatures and Wall Refractory Heat Flux

Wall Thermocouples

Installed in the center of the top wall of each section

Permanently installed indicator of temperature profile (continuous data)

Old Wall Thermocouple Device

Measured temp is not of the wall

- Heat transfer characteristics of measurement device are dissimilar to surroundings
- Ceramic, wire and air gaps vs. refractory
- Placement of bead is uncertain
- Interpretation of the data requires a complicated model which includes the surrounding environment

New Wall Thermocouple Device

Advantages:

- Environment closely approximates the natural furnace wall
- Simple mathematical description of temperature profile
- Both surface temperature and heat flux can be acquired

Disadvantages:

- Expensive
- Difficult to install

New Wall Thermocouple Instrument Model

Mathematical Description:

$$q = k_{ref} \frac{\left(T_1 - T_2\right)}{\left(X_1 - X_2\right)} \qquad T_s = T_1 + q \left(\frac{X_1}{K_{ref}}\right)$$

Assumption: The wire and double bore ceramic do not impact the temperature profile

Quantifiable sources of error:

- Standard error in type-B thermocouple bead
- Variability in thermocouple set depth measurement
- Variability in material thermal properties

Expected

$$\Delta T = 748 \text{ to } 894 \pm 5 \text{ (°C)}$$

Behavior:

$$q = 1651 \text{ to } 1971 \pm 171 \text{ (W/m}^2)$$

Range is from section 1 through 10 device distributions

Measuring Radiative Heat Flux

Radiometer Configuration

- Installed on the center port in the first three sections of the furnace
- Open 4" cavity (optically dark) on the opposite side of the furnace
 - Minimize the wall effects and measure only flame properties

Physical Processes of the Radiometer

Radiometer Instrument Model

Mathematical Description:

$$d_i = \frac{1}{\frac{1}{d_o} + \frac{1}{f}}$$
 $r_i = \frac{d_i r_o}{d_o}$ Lens optics

$$I_i = I_o \left(\frac{r_{lens}}{r_i} \right) (1 - \rho)$$
 Thermistor irradiation $q_{rad} = \pi r_i^2 I_i$

$$q_{\text{rad}} + q_{\text{rad3}} + q_{\text{rad4}} = q_{\text{cond}} + q_{\text{conv}} + q_{\text{rad2}}$$

$$R_t = R_{ref} exp \left(A + \frac{B}{T_t} + \frac{C}{T_t^2} + \frac{D}{T_t^3} \right)$$
Energy balance

$$V_{meas} = V_{app} \left(\frac{R_{non}}{R_{non} + R_1} - \frac{R_{irr}}{R_{irr} + R_2} \right)$$
 Wheatstone bridge

L1500 Heat Balance (High Temp Oxy-coal)

Targeted Conditions

Firing Rate	Btu/hr	3.0
Coal Rate	lb/hr	238
Primary Air/FGR	lb/hr	302
Primary O ₂	lb/hr	55
Inner Secondary Air/FGR	lb/hr	
Inner Secondary O ₂	lb/hr	478
Inner Secondary Temp	°F	100
Outer Secondary Air/FGR	lb/hr	
Outer Secondary O ₂	lb/hr	
Outer Secondary Temp	°F	

Skyline Coal Composition

С	70.60
Н	5.05
N	1.42
S	0.53
0	10.39
Ash	8.83
Moisture	3.18
Volatile Matter	38.6
Fixed Carbon	49.4
HHV, Btu/lb	12606

^{*} all values in mass % unless otherwise specified

Example Data Set

* Air-fired flame at the end of the high temperature oxygen test

Example Data Set

Methods:

- Furnace heat removal can be assessed in two ways
 - Enthalpy of the reactants minus the enthalpy of the flue gas at the furnace exit
 - Direct measurement of active heat removal through water cooled surfaces plus heat loss through the refractory wall

Example Data Set

Assumptions:

- Heat loss through the refractory wall is significant
 - Can be estimated using the measured heat flux in the roof of each section.
 - Heat loss is assessed by applying the measured heat flux uniformly across each furnace section
 - Heat flux through the burner plate is assumed to be the same as in section 1
 - Heat flux through section 11 and 12 is assumed to be the same as section 10
 - Heat removal through both radiation heat exchangers is assumed to be the same.

Example Data Set

Heat Loss From Furnace 2.69 MMBtu/hr

1.3 % Difference

Measured Heat Removal 2.64 MMBtu/hr

Summary & Conclusions

- Weaknesses of year 1 measurements performed in the 1.5 MW oxy-coal unit have been identified
- Measurement devices have been upgraded to quantify:
 - Heat transfer through cooling surfaces
 - Wall temperatures
 - Radiation intensity
- Instrument models have been developed
- Pathway for uncertainty quantification has been developed

Questions