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Abstract—Hierarchical data representations have been
shown to be effective tools for coping with large-scale scientific
data. Writing hierarchical data on supercomputers, however,
is challenging as it often involves all-to-one communication
during aggregation of low-resolution data which tends to span
the entire network domain, resulting in several bottlenecks. We
introduce the concept of indexing templates, which succinctly
describe data organization and can be used to alter move-
ment of data in beneficial ways. We present two techniques,
domain partitioning and localized aggregation, that leverage
indexing templates to alleviate congestion and synchronization
overheads during data aggregation. We report experimental
results that show significant I/O speedup using our proposed
schemes on two of today’s fastest supercomputers, Mira and
Shaheen II, using the Uintah and S3D simulation frameworks.

I. INTRODUCTION

Large-scale scientific simulations run on supercomputing

systems with tens or hundreds of thousands of processes

and produce data hundreds of gigabytes or terabytes in size,

posing serious challenges to post-processing data analysis

tasks which are often performed on machines with much

less computing power and memory. Multiresolution data

representations have been shown to be a promising solution

to this problem [1], [2], [3], [4], as they allow scientists

to decide the scale at which a given analysis task will

be performed, avoiding the need to read or even to store

data at finer scales. In particular, they enable interactive

visualization of large scale HPC data since data can be

accessed at varying levels of resolution with low latency.

Also, simulation data written directly into multi-resolution

format can be used immediately in efficient data analytics

without data duplication or slow post-processing.

Two phase I/O [5], [6] is a commonly used technique

in which data is moved (or aggregated) across the fast

interconnect onto a few chosen aggregator processes before

being written to disks. Data movement during the aggrega-

tion phase is challenging, because network congestion can

happen due to a skewed distribution of aggregators among

processes so that traffic converges to a small set of links.

Also, when the number of sending processes become too

large, links leading to aggregator nodes become congested,

and the cores on these nodes themselves become bottlenecks

due to a high number of receive calls to process. These

two issues happen often in aggregating coarse levels of

hierarchical data, which span the entire domain. Yet another

source of bottlenecks comes from MPI’s collective calls

such as MPI_Win_fence() which incur synchronization

overheads that grow rapidly as the number of processes in

an MPI communicator grows [7], [8], [9].

In this paper we introduce novel techniques that are

collectively used to alleviate congestion and global com-

munication overheads. We focus our study primarily on

HZ-order, a hierarchical multi-resolution data format that is

efficient to compute and has been shown to have excellent lo-

cality both spatially and hierarchically [2]. HZ-based multi-

resolution data format has successfully been used in [4] for

interactive Poisson editing of gigapixel images, and in [10]

for interactive analysis of multi-terabyte climate simulation

data. There has been work on efficient writing of HZ-ordered

grids ([11], [12], [13], [14]), but none has addressed in-

depth the issue of efficient aggregation for hierarchical data,

which is the main topic of this paper. We generalize the

HZ-order format such that it enables uniform distribution

of aggregators in rank space, avoiding congestion. Further,

we demonstrate that our approach is effective not only for

hierarchical formats, but also for non-hierarchical.

Our contributions include:

• The concept of indexing templates that are used to create

a range of multi-resolution decompositions, partitioning

schemes, and aggregation patterns. The template provides

flexibility in terms of both data organization and move-

ment. (Section II).

• A localized aggregation scheme based on altering a prefix

of the indexing template, which facilitates efficient data

movement by distributing aggregators uniformly in rank

space across the multi-resolution hierarchy. (Section III).

• A domain partitioning scheme where data is divided

among a number of partitions in a way that enables each

partition to write an independent dataset while maintaining

the global hierarchy, alleviating the overheads associated

with global communication. The partitioning planes fol-

lows a prefix of the indexing template. (Section IV).

We report the results of extensive experiments for each
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Figure 1: HZ ordering for an 8× 8 dataset with the yxyxyx indexing template.

of the proposed schemes on two systems with very different

architectures: ALCF’s Mira [15] (an IBM BlueGene/Q)

and KAUST’s Shaheen II [16] (a Cray XC40). We tested

our methods using both micro-benchmarks and simulations

using the Uintah and S3D simulators. Our methods result

in significant I/O speedup compared to traditional methods

with uniform aggregator placement and no partitioning.

II. INDEXING TEMPLATES

Samples can be ordered in different ways when written to

a file. Indexing is the process of reordering samples from one

scheme, typically row-major, to another scheme. Different

orderings achieve different objectives. For example, row-

major order is popular because it is simple and easy to

implement it, but it shows poor data locality. Z-order [17]

is efficient to compute and shows excellent data locality.

HZ indexing (Hierarchical Z-order) [2] adds hierarchical, or

resolution, locality to Z-order.

We introduce indexing templates as succinct descriptors

of sample ordering. Index templates have useful properties

that we will be able to use in domain partitioning and

aggregation. We motivate indexing templates using HZ-order

and then generalize to other structured data orderings.

In this section we summarize HZ indexing. Detailed

descriptions can be found in [2] and [18]. HZ-order imposes

both resolution levels and ordering within resolution levels.

For example, in 1D, two levels of resolution can be created

by splitting the samples into even and odd samples. More

levels can be added by recursively splitting the even samples

in the same way. In higher dimensions, each split occurs in a

specific dimension. A sequence of splits can be described as

a string of x, y, and z characters, each corresponding to the

dimension in which to split. For example, consider splitting

the samples of an 8×8 grid using the string yxyxyx that is

to be parsed from right to left, where x and y are the split

dimensions. We call this string the indexing template. Using

the template yxyxyx we get the hierarchy shown in figure

1. The last resolution level (level 6) consists of all odd X
samples because the last character is x, while the second-last

resolution level has all odd Y samples among the remaining

samples. We continue recursively, each time extracting a

character from the right and extracting a resolution level

from the remaining samples until the string is exhausted

and only one sample is left.

With hierarchy defined we now turn to sample ordering

within a resolution level. At hierarchy level l, we define

the GZ (Generalized Z) template to be the leftmost l − 1
characters of the indexing template. Consider level 6 in

the example. We order the samples according to the GZ

template yxyxy (i.e., the first five characters of the indexing

template) as follows: we interleave the bit representations of

the sample’s x, y and z Cartesian coordinates according to

the string in consideration (e.g., yxyx means taking the first

bit from y, the second bit from x, the third bit from y, and

the fourth bit from x). The bit interleaving pattern dictated

by yxyxyx is the same as the Morton code, or Z-order [17].

Indexing templates generalize the Z- and HZ-orders.

We call the new orderings GHZ-order (Generalized HZ-

order). Similarly, at a given hierarchy level, we say the

samples are in GZ-order. See figure 2. Indexing templates

are powerful tools in that they control the shape of the

GZ curves at different hierarchy levels which becomes

important when matching samples to processes. Certain

GHZ-orderings cause a process to contain non-contiguous

chunks of samples, while others cause a contiguous chunk

of samples to span non-contiguous chunks of processes, both

of which are undesirable for efficient aggregation (explained

later). For an illustration of the first problem, see figures 2a

and 2b, where the domain is spanned by four processes, each

occupying one quadrant of the 8× 8 grid. In figure 2b, the

sample-to-process distribution is at odds with the yyxxyx
indexing template, causing each process to contain a non-

contiguous range of samples in HZ space, whereas in 2a

there is no such problem. We say a GZ curve is rank-

conforming if the curve visits processes in strictly increasing

order of rank. A GHZ-order given by an indexing template

is rank-conforming if the GZ-curve at each hierarchical

level is rank-conforming. We show in the next section that

rank-conforming GHZ-orderings are desirable for efficient

aggregation.
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(a) yxyxyx template (b) yyxxyx template

Figure 2: GHZ indexing using two different indexing tem-

plates. Only the last level is shown. Blue lines show process

boundaries while big letters show process IDs. Red lines

highlight the GHZ curve at level 6. The GZ curve in (a) is

rank-conforming since the curve visits the processes in rank

order. The indexing in (b) is not rank-conforming since each

process is visited twice.

III. EFFICIENT AGGREGATION FOR HIERARCHICAL DATA

We start the discussion of efficient aggregation by defining

the concept of aggregation groups, which will play a crucial

role in this section and the rest of the paper. In our I/O

framework, each aggregator is responsible for writing only

one file. The set of processes that aggregate data for a

common file is called an aggregation group for that file (see

figure 3). Each file consists of a fixed number of contiguous

samples in GHZ space. The aggregation groups for two files

may overlap if the files belong to different resolution levels,

while files on the same level always have non-overlapping

aggregation groups.

A. Challenges for efficient aggregation of hierarchical data

Several works have studied the problem of placing aggre-

gators carefully to achieve better utilization of the network

(see [19], [20], [21]), but none considers multi-resolution

data. Among the conditions for efficient aggregation, a

uniform distribution of aggregators has been identified to

be particularly important because it takes full advantage of

parallelism in the network. However this condition is non-

trivial to enforce for multi-resolution data due to overlapping

spatial extents across resolution levels. Prior works on

efficient I/O for HZ-indexed grids such as [11] and [12]

use a uniform distribution scheme, where aggregators are

chosen uniformly and are assigned to files in an one-to-one

manner, starting from file 0. We have found that this sim-

ple aggregation scheme introduces a staggered and uneven

communication pattern: on every level, the aggregators are

clustered in rank space, causing underutilization of the net-

work and congestion on the links close to these aggregators

(see figure 6). We have confirmed this inefficiency through

experiments that will be discussed later in this section.

(a) File 0. Levels 0-5. Group
0-15. Samples 0-31.

(b) File 1. Level 6. Group 0-
15. Samples 32-63.

(c) File 2. Level 7. Group 0-7.
Samples 64-95.

(d) File 4. Level 8. Group 0-3.
Samples 128-159.

Figure 3: Aggregator groups and aggregators for indexing

template yxyxyxyx The 16 processes are in Z-order and

there are 32 samples per file. Aggregators are highlighted

in gray background. Diamond samples with the same color

belong to the same file. Sample indices are shown for the

given file. Level is the GHZ-order level of the samples.

Group is the aggregation group. Samples are the GHZ

indices of the samples to be written to the file.

B. Localized aggregator selection

Our proposed aggregation scheme avoids the pitfalls of

the uniform distribution scheme by enforcing the “locality”

constraint: the aggregator for each file is chosen from the

aggregation group for the same file. In particular, to find an

aggregator for a given file, we calculate the Cartesian coor-

dinates of its first and last samples. From those coordinates

we obtain the range of processes spanning the file (i.e., its

aggregation group). In the case of a single simulation field,

the aggregator is the process with index 1
2 (f + l) where

the aggregation group ranges from process f to process l.
Generalizing to n simulation fields, the aggregator for field i
is i+1

n+1 (f+l). If the first and second file share the same range

of processes, as seen in figure 3, we apply a fixed offset to

the aggregators for the first file so that they start at rank 0.

An example of this scheme in 2D is shown in figure 3, where

we show that our algorithm can pick aggregators uniformly

at each level and across levels.

The localized aggregator selection requires that the GHZ

curve be rank-conforming in order to guarantee a uniform
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(a) Row-major prefix
(yyxx) and row-major
rank distribution

(b) Morton prefix yxyx
and Morton rank distribu-
tion

Figure 4: Altering indexing template prefix to match process

rank distribution. In both cases, the GZ curve visits the

processes in strictly increasing rank order.

distribution of aggregators in rank space. We ensure this

by restructuring the distribution of samples to processes

so that each process holds a 2px × 2py × 2pz block of

samples, for some appropriately chosen integers px, py ,

and pz . This restructuring is equivalent to using the last

(rightmost) p = px + py + pz characters in the indexing

template to index intra-process samples. The best way to

set these last p characters is to make them fully interleaved

(i.e., rotating among z, y and x in turns), to maximize spatial

locality.

Assuming the indexing template has n characters, the

remaining n− p characters are used to index the processes

themselves. To ensure the GHZ curve visits the processes

in increasing rank order, we alter this (n − p)-character

prefix of the indexing template to match the process rank

distribution in the spatial domain. As an example, consider

the 8× 8 grid in figure 4, where the first 4 characters of the

indexing template are used to index the 24 = 16 processes.

A row-major ordering of ranks requires the template to

start with yyxx (figure 4a), while a Morton ordering of

ranks requires the yxyx prefix instead. In general, the

prefix that works for row-major rank ordering is of the

form zz . . . zyy . . . yxx . . . x, while for column-major order-

ing it is xx . . . xyy . . . yzz . . . z, and for Morton ordering

zyxzyx . . . zyx.

The fact that we alter only a prefix of the template

is important, because modifying the indexing template in

any way affects the structure of the GHZ hierarchy and,

therefore, locality. Since the last p characters of the template

are not altered, the last p + 1 levels are left almost intact:

the set of samples on each of these levels stays the same,

but the GZ curve changes, potentially resulting in worse

locality. Our blocking mechanism thankfully alleviates this

loss in locality, as the samples within each block are still

spatially coherent, only the blocks themselves are less so.

For coarse levels that correspond to the altered template

prefix, the fact that these levels can be jumbled turns out

not to be a problem in practice. It is generally not beneficial

to work with very low-resolution versions of the data. So

the first few resolution levels can actually be merged into

one level without affecting the practical usage of the data.
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Figure 5: Performance comparison of the three aggregation

strategies for different indexing template patterns on Mira

(left) and Shaheen (right). The standard deviations on Mira

are on the order of 10−5s, and on Shaheen 10−2s.
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Figure 6: Aggregator distribution using 512 processes and 32

aggregators, separated by levels on the horizontal axis. Row-

major rank distribution is used. The zzyyxx template prefix

(top right) matches the rank distribution, yielding uniform

distribution in rank space.

C. Comparison of aggregation selection schemes

In this section we present a series of micro-benchmarks

run on Mira and Shaheen to compare six aggregation

strategies: uniform aggregation, and localized aggregation

using six template prefix patterns, which are: zzyyxx (short

for zz . . . zyy . . . yxx . . . x) (Z-axis major or row major),

yyxxzz (Y major), xxyyzz (X major), zyxzyx (Z-major

Morton), yxzyxz (Y-major Morton) and xzyxzy (X-major

Morton). The experiment was carried out with 4096 pro-

cesses, each containing 323 samples. The process ranks are

laid out in row-major order in all cases, so we expect that

the zzyyxx would perform the best, which is confirmed

by experimental results. The total amount of data being

aggregated for each of these template configurations is fixed

at 1 GB. The results are plotted in figure 5.

Our experiment shows that on Shaheen there is virtually

no difference among the schemes, possibly due to the high

connectivity of the Dragonfly network. On Mira, uniform

aggregation performs very poorly compared to localized
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Figure 7: Aggregation timings at 65536 processes for all

group sizes, on Mira (left) and Shaheen (right).

aggregation in general. Among the localized aggregation

template prefixes, xxyyzz is the worst by a large margin,

while zzyyxx is the best. To see the reason, we visualize

the distribution of aggregators in rank space (figure 6). As

can be seen in the figure, uniform aggregation and template

indices xxyyzz and zyxzyx result in clustering and thus

underutilization of the network. Only the zzyyxx prefix

distributes aggregators uniformly on all levels. Note that

both uniform aggregation and localized aggregation using

the zzyyxx template prefix select aggregators uniformly in

rank space as a whole, but only the latter selects aggrega-

tor uniformly on each level as well, which is crucial for

performance.

In figure 7 we separate the timings for different ag-

gregation group sizes for a 65,536 process run. We keep

the same configuration as the runs in figure 5. Although

the amount of data aggregated in each group is constant,

lower-resolution files span across more processes, therefore

having a bigger group size. On Mira, time is constant for all

aggregation group sizes, while on Shaheen time increases

for larger aggregation group sizes, possibly because as the

communicating nodes span more than one network group,

the slower inter-group links become the bottlenecks. In con-

trast, on a torus network using shortest-Manhattan-distance

routing such as Mira’s, the number of routing paths grows

in proportion with the number of communicating nodes to

maintain a constant network throughput.

Finally we note that the timing numbers reported here

are for one simulation field. The timing differences among

schemes will grow proportionally with the number of fields,

which can range from tens to hundreds, in real simulation.

IV. DOMAIN PARTITIONING

The data aggregation phase is often plagued by scalability

challenges at high core counts. A common problem at high

core counts is MPI synchronization overheads when too

many processes are involved in one communicator. This

problem can be solved by splitting one global communicator

into several communicators, each responsible for many fewer

processes. However, for multi-resolution data we also face

the problem where the aggregation for low-resolution files

becomes a bottleneck due to these files straddling across too
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Figure 8: Scaling results for the aggregation of the first file

for Mira (left) and Shaheen (right)

many processes (all processes in the case of the first two

files). In this section we first describe the aforementioned

two challenges in detail, and present a unified solution in

the form of a domain partitioning scheme.

A. Limited scalability of group size

In figure 3a we see an example of a file that strides

across the entire domain, resulting in an all-to-one commu-

nication pattern during aggregation. This is typical in any

multi-resolution scheme at low resolutions, and it results in

network bottleneck, as the aggregator has to process a large

number of network messages, each incurring overhead in the

network stack. This problem is illustrated in figure 8, which

plots the aggregation time for the first file with increasing

number of participating processes. The size of the first file

is fixed, so a fixed amount of data is moved across the

network during the aggregation phase, but the all-to-one

communication pattern renders the aggregation phase non-

scalable.

B. Limited scalability of the number of groups

The other cause of network congestion is increasing

cost of MPI synchronization when too many processes are

involved in one communicator. In our implementation, MPI

one-sided communication is used for data transfer, and

MPI_Win_fence() is used for synchronization. An MPI

fence is commonly implemented as a barrier on one process

that waits for confirmation signal from all other processes

in the same communicator. This communication pattern

creates serious bottlenecks as the number of processes in

the communicator increases. This problem is illustrated in

figure 9 with a weak scaling experiment. We vary the total

number of processes and measure timings for three aggre-

gation group. For a given group size (holding the number of

processes in a group fixed), time increases with increasing

number of groups suggesting communication bottlenecks

caused by MPI_Win_fence(). This problem indeed has

been identified by works such as [7], [8], and [9].

C. Partitioning schemes

We propose to tackle both challenges by partitioning the

domain and having each partition write its own dataset, re-

stricting communication and MPI synchronization to within
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Figure 9: Aggregation timing for different aggregation group

sizes on Mira (left) and Shaheen (right). Number of cores

is from 2K (8 GB) to 65K (256 GB). For all core counts,

the amount of data moved for an aggregation group size is

fixed, while the total number of aggregation groups changes.

a partition. Partitioning a regular and non-hierarchical grid is

straightforward, as demonstrated in [22]. For a hierarchical

grid however, if each partition writes its own dataset, low-

resolution samples will be scattered across files. We propose

two solutions to this problem. In the first solution, the

partitions write data in the global index space, which puts

most of the data in its correct block on disk, and we use

a serial routine to merge the low-resolution samples from

across partitions. In the second approach, each partition

writes completely in its own local index space.

1) Writing data in global index space: Figure 10 illus-

trates the global index space approach. Four partitions are

imposed on a 16× 16 grid and each file block contains 16

samples. The first two blocks straddle across all partitions,

the third and fourth each straddles across half the partitions,

but the fifth block onwards are contained within a partition’s

boundary. In general, if there are R partitions, and B blocks

(B > R), there will be two all-partition blocks (the first

and the second one), R − 2 multi-partition blocks, and

B−R single-partition blocks. Multi-partition blocks that are

written in global index space will result in holes in the files,

and will be replicated on each of the partitions (see figure 10,

(e) and (f)). The number of replicated global blocks is R.

For each of these R blocks, we use a single-process merge

routine that reads and merges the replicas in memory into a

single block and writes it back to disk. The actual amount

of data that needs to be read from disk and merged is

BR log2 R where B is the size of a block in bytes. The

number of replicas that are written decreases exponentially

as one progresses through resolution levels, so the number

of replica blocks is typically a small fraction of the total

number of blocks. As an example, for a 5123 data set

consisting of 4096 blocks and 4 partitions, the first 4 global

blocks will be written as 12 blocks on disk, for an overhead

of 8/4096 ≈ 0.2%. Empirically we observe that merging

2, 4, 8 and 16 blocks (from 512 KB to 4 MB in size

respectively) from 2, 4, 8 and 16 partitions respectively took

0.1, 0.4, 0.5 and 0.7 seconds on a Mira login node.
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Figure 10: Partitions writing in global index space. Samples

in circles belong to the same block. Red lines indicate

partition boundaries. In (e) and (f) each row shows the data

as written on disk, for one partition. Blue lines separates

adjacent blocks. Nothing is written in empty cells.

2) Writing data in local index space: Alternatively, each

partition can write a separate dataset in its local index space,

with no knowledge of the global dataset (see figure 11). The

advantage of this approach is that there is no data replication

or post-process merge as seen in the global index space

approach. However, the reader of data now has to know that

the different datasets belong to one single, global dataset, so

that data queries can be answered and displayed correctly.

Another problem with this approach, as figure 11 shows, is

that if we keep the size of a block fixed for I/O efficiency

reasons, the data can no longer be queried below certain

resolution levels. For example, in figure 10a we can read

the first block of the data and obtain a coarse representation

consisting of samples in the first five resolution levels.

However in figure 11a when data is written in per-partition

local index space, the first block gives one-quarter of a
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finer representation that corresponds to the first seven levels

instead of five. Two levels are “lost”, due to the fact that

the domain is composed of 22 = 4 partitions. Fortunately

this is not a big problem in practice, for two reasons. First,

as mentioned in the last paragraph of section III-B, the first

few resolution levels give too little information to be useful.

Second, the number of partitions in practice is not so large

that too many coarse levels are lost.

As writing in global and local index space both have their

pros and cons, we consider both as viable solutions.

D. Partitioning based on the indexing template

For both global and local index space partitioning to

work as intended, the partitioning axes must follow the

indexing template so that each partition stores only samples

that are contiguous in GHZ space. When this condition

is satisfied, most blocks written under domain partitioning

will contain exactly the same data as if they were written

without domain partitioning, so in the global index space

approach, few samples need merging, and in the local

index space approach, fewer resolution levels are lost. To

enforce this condition we split the indexing template into

two pieces. Given R partitions, the first log2 R characters

are the partition template and the remaining characters on

the right are the local indexing template.

The partition template determines the partitioning planes.

For example, if the goal is to create 8 partitions and the

indexing template is yzxxyz then the partition template is

yzx (the first 3 = log2 8 characters). The first partition plane

must divide the domain in half along Y, the next along Z and

the last one along X. After the partitions are identified, we

assign one sub-communicator to each group of processes

sharing a partition. The global communicator is not used

anymore for aggregation, and there is also no aggregation

of data across the partitions, as each writes data in complete

isolation from other partitions, either in global or in local

index space.

The remaining characters of the indexing template after

removing the partition template constitute the local indexing

template. The local indexing template is used to write in

local index space. When writing in global index space we

use the original, global indexing template.

E. Evaluation

In this section we report several experiments that quantify

the effects of domain partitioning on data aggregation and

file I/O at scale. We adopt the global index space approach

here, but do not expect the performance of the local index

space approach to differ significantly. In figure 12 (top

row) we vary the number of partitions and measure total

aggregation time. Aggregation time reduces significantly

every time the number of partition doubles (solid black

trend line), indicating that domain partitioning is effective in

mitigating communication bottlenecks at high core counts.
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(c) First block stored on disk for each partition.

Figure 11: Partitions writing in local indexing space. Each

partition writes its own dataset in complete isolation. (a)

shows that all the four first blocks combine to “consume”

the first 7 HZ levels, as opposed to figure 10a, where the

first block only consumes only the first 5 HZ levels.
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Figure 12: Effects of domain partitioning on the aggregation

(top) and file I/O (bottom) with varying partition counts on

Mira (left) and Shaheen (right). 131K processes are used on

Mira and 65K on Shaheen. Number of partitions varies from

1 (no partition) to 16. Per-process load is 4 MB.

The effects of domain partitioning on file I/O performance

can be seen in figure 12 (bottom row). The performance

is largely unaffected by the number of partitions, most

likely because our localized aggregator scheme successfully

distributes the load uniformly across the I/O nodes.

We also run weak scaling experiments to understand the

efficacy of partitioning at scale. Figure 13 shows that aggre-

gation time remains fixed at all scales. It is therefore possible

to achieve a high degree of scalability by adopting domain
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Figure 13: Weak scaling results of the aggregation phase

using domain partitioning on Mira (a) and Shaheen (b).

Number of processes: 8K to 131K on Mira, 8K to 65K on

Shaheen; data per process: 4 MB. The number of partitions

varies from 1 (at 8K processes) to 16 (at 131K processes).

partitioning. Depending on the application and the platform

under consideration, a good partition size in practice can

range from 1024 to 8192 processes.
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File I/O

Processes Aggregators Files

Figure 14: End-to-end data movement framework.

V. END-TO-END DATA MOVEMENT PIPELINE

In this section, we present how localized aggregation

and domain partitioning fit together in our data movement

framework (figure 14). The first step is deriving an optimized

indexing template. In the example in the figure, there are

4×4 processes laid out in row-major order, each containing

8 × 8 samples giving 32 × 32 total samples. Note that if

each process holds a non-constant or a non-power-of-two

number of samples in the beginning, we need to impose

a restructuring step that re-distributes the samples properly.

The 8× 8 samples per process gives rise to the interleaved

template suffix yxyxyx, while the row-major ordering of

the processes suggests using the template prefix yyxx. So

the whole indexing template is yyxxyxyxyx. We can break

the domain into two partitions along the Y axis, because the

first template character is y. If we were to create 4 partitions,

we would use yy, and so on. These partitions write data in

parallel, each using localized aggregation.

A. Comparison of optimization techniques

We developed a micro-benchmark to quantify the perfor-

mance improvement due to our two proposed techniques.

Our baseline aggregation scheme uses uniform distribution

of aggregators similar to [23]. The second implementation

uses localized aggregation alone, and the third one uses both

localized aggregation and domain partitioning. It can be seen

in figure 15 that the domain partitoning is necessary on both
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Figure 15: Efficacy of localized aggregation and domain

partitioning. Per-process resolution is 323, 16 variables,

using doubles. In domain partioning, number of partition

is 1 (8192), 2 (16384) and 4 (32768).
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Figure 16: Results for weak scaling of PIDX I/O on Mira

for S3D (a) and Uintah (b) simulations. (c) Results for weak

scaling of PIDX I/O on Shaheen using S3D. (d) Scaling

result of PIDX for low core counts on Shaheen.

machines to get scalable performance. Localized aggregation

brought no improvement on Shaheen II, as opposed to a

20% improvement on Mira. This can be attributed to the

differences in network topologies of the two machines, as

explained in Section III-C.

B. Evaluation using S3D and Uintah

In this section we use weak scaling to evaluate the

performance of our I/O framework with real applications,

namely S3D [24] and Uintah [25]. With S3D, each process

writes a 323 block and 16 fields of double precision data (4

MB). The amount of data written varies from 8 GB (4K

processes) to 256 GB (131K processes) on Mira, and 4

GB (2K processes) to 128 GB (65K processes) on Shaheen.

We also report IOR [26] timing numbers for both file-per-

process and shared file I/O using MPI collective I/O.

On Mira, the partition size is 4096 processes, so the

number of partitions varies from 1 to 32, at 4K and 131K

processes respectively. In contrast to Mira, on Shaheen we
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observe that the aggregation time dominates the actual file

write time. Hence, we reduce the partition size to 1024

processes, as smaller partition sizes reduce aggregation time

without affecting file write time (see section IV-E). On Mira,

figure 16a shows that our I/O framework scales well up

to 131K processes, and it performs better than IOR for

most process counts. A similar trend is seen on Shaheen

(figure 16c), except at low process counts. To achieve better

performance at these low process counts we further increase

the number of partitions to 1024 and use bigger block sizes

of 1024 and 4096 instead of 256 samples, for more efficient

disk access (figure 16d).

Uintah uses task-based parallelism, but from I/O point

of view differs from S3D only in terms of the number

of fields. For Uintah simulation, each process holds a 323

block of double precision data (16 MB) consisting of 64

fields. On Mira, we varied the number of processes from

8K (128 GB) to 131K (2 TB). Each partition contains 4096

processes. It can be seen in figure 16b that IOR scales up to

65K processes compared to 13K for our framework. Overall

the promising results suggest that the techniques introduced

in this paper can help our I/O framework achieve good

scalability with large-scale simulations.

VI. CONCLUSION AND DISCUSSION

We have presented two techniques for efficient aggrega-

tion of multi-resolution data, namely domain partitioning

and localized aggregation. Both are designed to take ad-

vantage of the fractal-like structure of the hierarchical Z

indexing scheme, which we generalized using the concept

of the indexing template. With indexing templates we can

optimize the distribution of aggregators to match well with

the underlying rank distribution of processes, as well as find

the optimal partitioning axes. Our overall data movement

framework exposes parameters (indexing template, number

of partitions, and number of aggregators) that control the

flow of data over network, and can be tuned depending on

the current configuration. Our techniques are generic, and

can be easily applied to regular, non-hierarchical grids (by

simply replacing HZ with Z indexing), as well as to other I/O

systems. For example, in other experiments we have seen an

8x improvement in throughput using domain partitioning on

parallel HDF at 32K processes on both Mira and Shaheen.

Our generalized HZ indexing can also be used to index

wavelet transform subbands, thanks to the discrete wavelet

transform using the exact even-odd style of splitting samples

into subbands [27]. Figure 17 (left half) illustrates the cor-

respondence between HZ indexing and kdtree-style wavelet

subband decomposition. We can also obtain an indexing

scheme corresponding to the more common octree-style

subband decomposition for wavelet (figure 17, right half),

by changing the HZ indexing formula slightly. This means

the techniques described in this paper can be used for writing

large grids of wavelet-transformed data on supercomputers,

Figure 17: Correspondence between wavelets subband de-

composition and hierarchical indexing. (Left) kd-tree index-

ing corresponds to (middle-left) kd-tree subband decompo-

sition. (Middle-right) Oct/quad-tree indexing corresponds to

(right) oct/quad-tree subband decomposition. Samples are

colored by wavelet subbands.

which is valuable as wavelets have proved to be very

effective in compression and progressive streaming of large

scientific data [3], [28], [29].
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