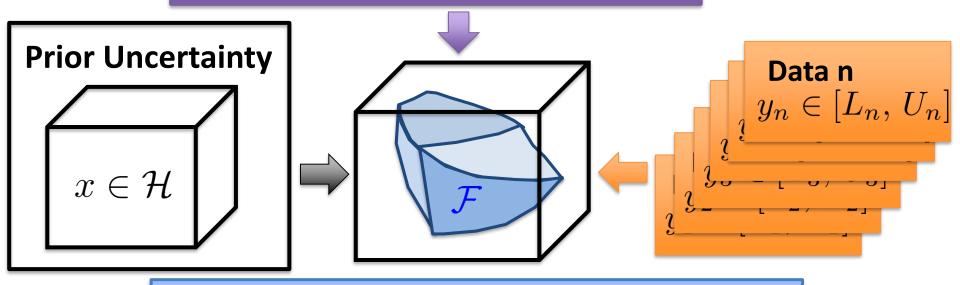


Bound-to-Bound Data Collaboration (B2BDC)

Model:
$$M_e(x), e = 1, 2, ..., n$$



Feasible set

 $\{x \in \mathcal{H} : L_e \le M_e(x) \le U_e, \ e = 1, 2, \dots, n\}$

Uniform sampling

Goal: uniform sampling of feasible set

- Sampling is useful in providing information about \mathcal{F}
- B2BDC makes **NO** distribution assumptions, but as far as taking samples, uniform distribution of \mathcal{F} is reasonable
- Applying Bayesian analysis with **specific prior assumptions** also leads to uniform distribution of \mathcal{F} as posterior (shown in next slide)

What Bayesian analysis leads to $\mathcal{U}(\mathcal{F})$

Deterministic model: $M_e(x)$

Prior distribution

$$X \sim \mathcal{U}(\mathcal{H})$$

$$f(x) = \begin{cases} \frac{1}{V(\mathcal{H})} & x \in \mathcal{H} \\ 0 & \mathbf{else} \end{cases}$$

Measurement distribution

$$Y_e \sim \mathcal{U}([L_e, U_e])$$

$$f(y_e) = \begin{cases} \frac{1}{U_e - L_e} & y_e \in [L_e, U_e] \\ 0 & \text{else} \end{cases}$$

Bayesian analysis

$$p(x|y) \sim p(x)p(M_1(x))\cdots p(M_n(x))$$

Posterior distribution

$$f(x|y) = \begin{cases} \frac{1}{V(\mathcal{F})} & x \in \mathcal{F} \\ 0 & \mathbf{else} \end{cases}$$

SPRING 2017 SIAM NC17

B2BDC and Bayesian Calibration and Prediction (BCP)

Reference

[1] Frenklach, M., Packard, A., Garcia-Donato, G., Paulo, R. and Sacks, J., 2016. Comparison of Statistical and Deterministic Frameworks of Uncertainty Quantification. *SIAM/ASA Journal on Uncertainty Quantification*, *4*(1), pp.875-901.

Nomenclature

- sampling efficiency acceptance rate
- feasible set $\{x \in \mathcal{H}: L_e \leq M_e(x) \leq U_e, e = 1, 2, \dots, n\}$

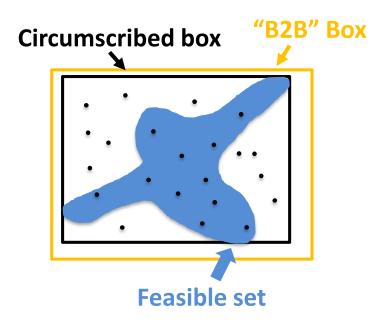
Rejection sampling with box

Procedure:

- find a bounding box
 - available from B2BDC
- generate uniformly distributed samples in the box as candidates
- reject the points outside of feasible set

Pros & Cons

- provably uniform in the feasible set
- practical in **low** dimensions
- impractical in higher dimensions



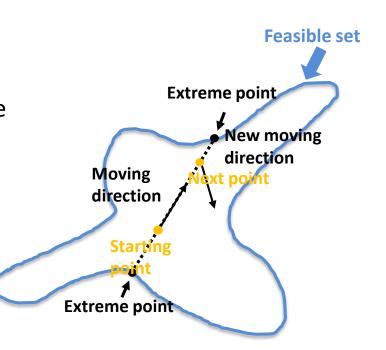
Random walk (RW)

Procedure:

- start from a feasible point
 - available from B2BDC
- select a random direction, calculate extreme points and choose the next point uniformly
- repeat the process

Pros & Cons

- NOT limited by problem dimensions
- NOT necessarily uniform in the feasible set



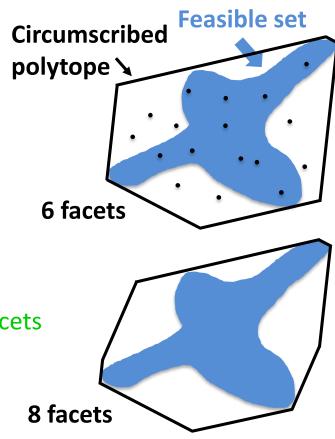
Rejection sampling with polytope

Procedure:

- find a bounding polytope
- generate candidate points by random walk
- reject the points outside of feasible set

Pros & Cons

- provably uniform in the feasible set
- increased efficiency with more polytope facets



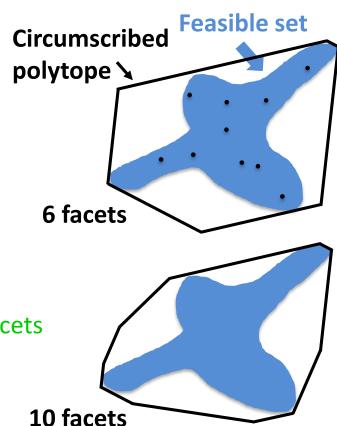
Rejection sampling with polytope

Procedure:

- find a bounding polytope
- generate candidate points by random walk
- reject the points outside of feasible set

Pros & Cons

- provably uniform in the feasible set
- increased efficiency with more polytope facets
- practical in low to medium dimensions
- limited by computational resource



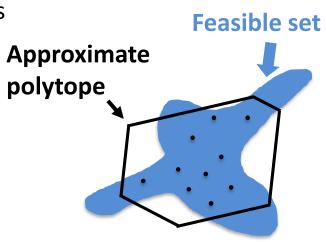
Approximation strategy

Procedure:

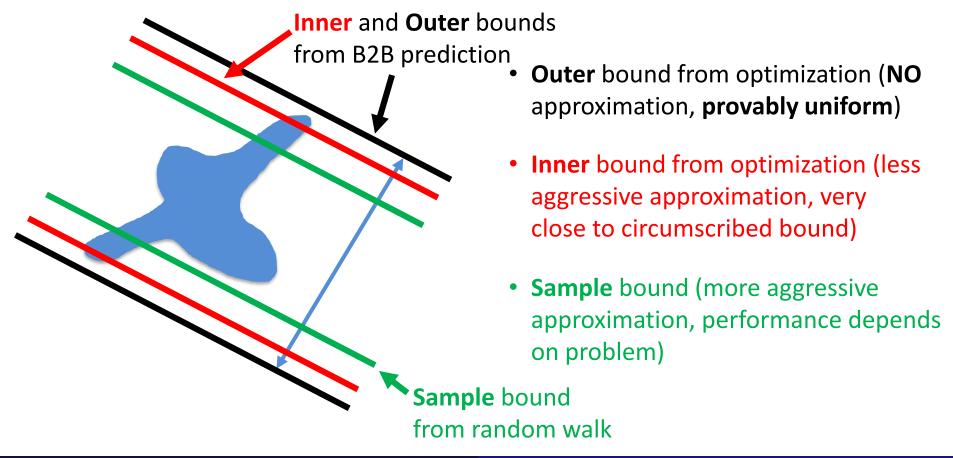
- relax the requirement that the polytope needs to contain the feasible set completely
- generate candidate points by random walk
- reject the points outside of feasible set

Pros & Cons

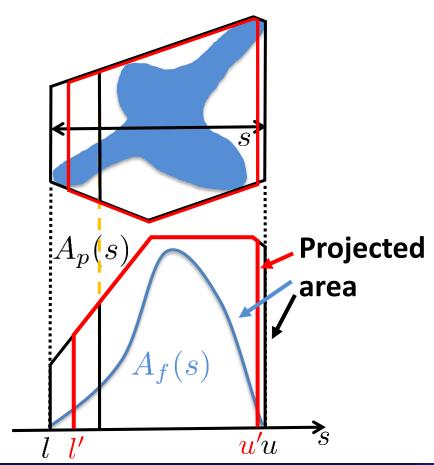
- practical in medium to high dimensions
- samples don't cover the whole feasible set



Define the polytope: one facet



Effect on sampling efficiency



Efficiency density function

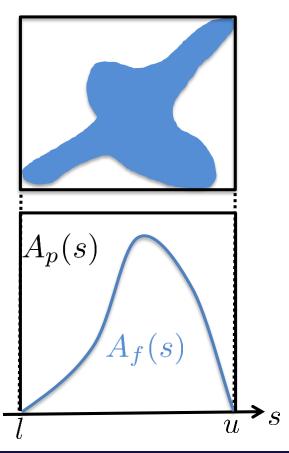
$$E(s) = \frac{A_f(s)}{A_p(s)}$$

$$e = \frac{1}{u-l} \int_l^u E(s) ds$$

Condition for improved efficiency

$$\frac{1}{u'-l'} \int_{l'}^{u'} E(s)ds > \frac{1}{u-l} \int_{l}^{u} E(s)ds$$

Effect on sampling efficiency



Special case with bounding box

$$A_p(s) = c$$
 $s \in [l, u]$
 $A_f(s) \propto p(s)$
 $E(s) = \frac{A_f(s)}{A_p(s)} \propto p(s)$

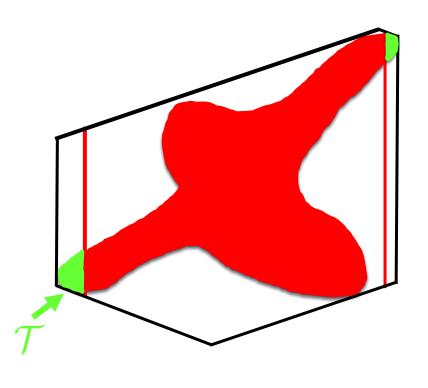
Assumption

 $E(s) \propto p(s)$ in the polytope case

Posterior check

$$\frac{1}{u'-l'} \int_{l'}^{u'} p(s)ds > \frac{1}{u-l} \int_{l}^{u} p(s)ds$$

Effect on sampled distribution



Target distribution

$$p(x) = \begin{cases} \frac{1}{V(\mathcal{F}_b)} & \text{if } x \in \mathbf{blue} \\ 0 & \mathbf{else} \end{cases}$$

Approximated distribution

$$p'(x) = \begin{cases} \frac{1}{V(\mathcal{F}_r)} & \text{if } x \in \mathbf{red} \\ 0 & \text{else} \end{cases}$$

Difference of mean for a function Q(x)

$$d = \left| \int Q(x)p'(x)dx - \int Q(x)p(x)dx \right|$$

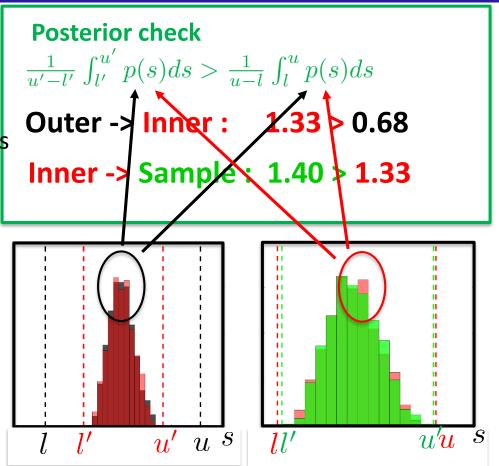
$$\leq (\max_{x \in \mathcal{F}_b} |Q(x)|) \int_{\mathcal{T}} p(x) dx$$

Toy example

Test condition:

- 5 parameters, 30 constraints
- 1000 facets for each polytope
- Optimization and sample bounds
- 1000 sample points

Polytope bound	Efficiency (%)
Outer bound	0.095
Inner bound	20.8
Sample bound	27.7

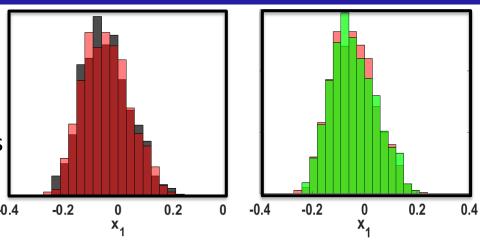


Toy example

Test condition:

- 5 parameters, 30 constraints
- 1000 facets for each polytope
- Optimization and sample bounds
- 1000 sample points

Polytope bound	Efficiency (%)
Outer bound	0.095
Inner bound	20.8
Sample bound	27.7



Passed the Kolmogorov-Smirnov test with 0.05 significance level

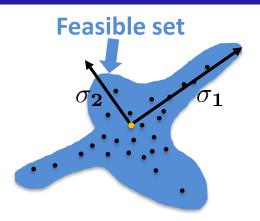
Principal component analysis (PCA)

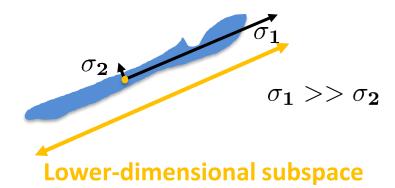
Procedure:

- collect RW samples from the feasible set
- conduct PCA on RW samples
- find a subspace based on PCA result
- generate uniform samples in the subspace

Pros & Cons

- reduced problem dimension
- works only if feasible set approximates lower-dimensional manifold/subspace





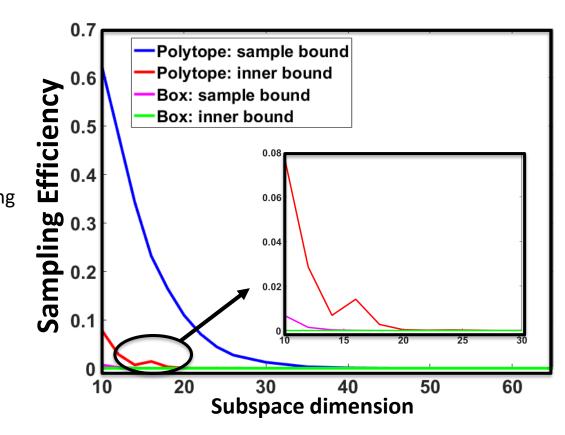
GRI-Mech

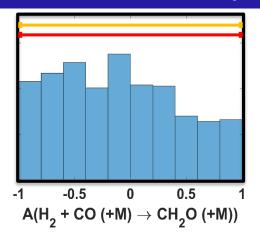
Test condition:

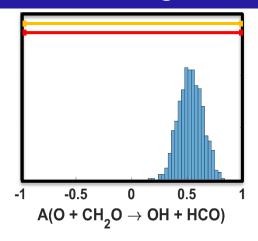
- 102 parameters
- 76 experimental data
- 10⁷ RW samples for PCA
- 10-65 subspace dimension
 - 10⁴ facets for each polytope
 - 10⁷ candidate points for sampling

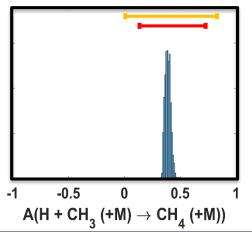
Test methods:

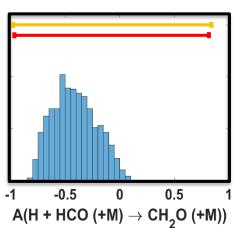
- polytope and box
- inner and sample bounds







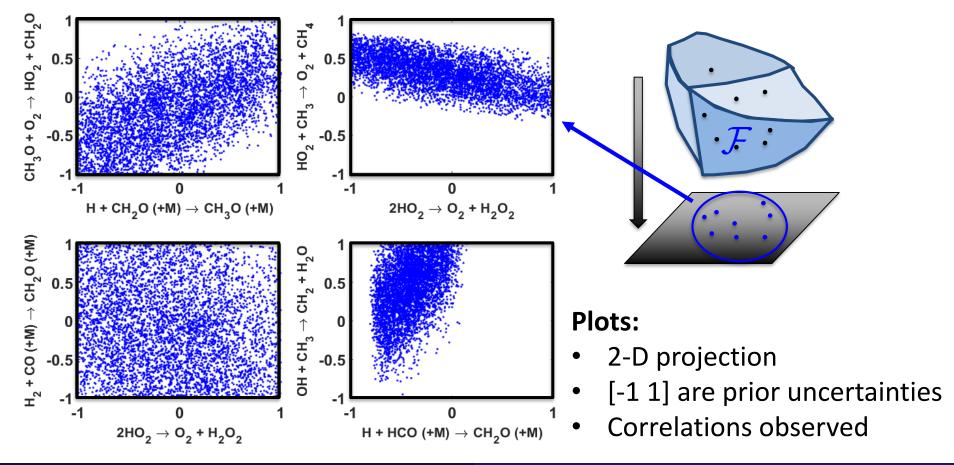




Test condition:

- 45 subspace dimension
- Polytope with sample bound
- 10⁴ facets for the polytope
- 1000 sample points
- [-1, 1] are prior uncertainties

GRI-Mech: 2-D posterior joint uncertainty



Summary

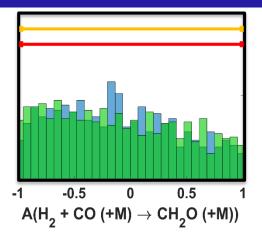
- We developed methods to generate uniformly distributed samples of a feasible set
- Approximation strategy and PCA further improves the practicality of rejection sampling method
- Hybrid statistical-deterministic uncertainty quantification process combining B2BDC prediction and uniform sampling

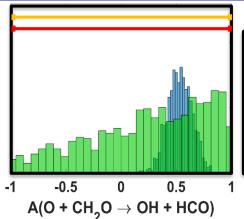
Acknowledgements

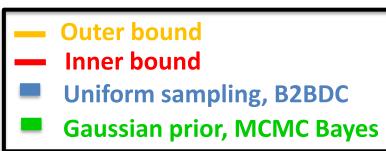
This work is supported as a part of the CCMSC at the University of Utah, funded through PSAAP by the National Nuclear Security Administration, under Award Number DE-NA0002375.

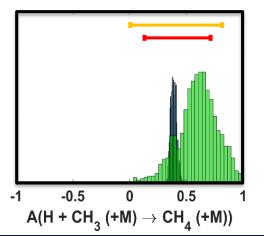
Thank you

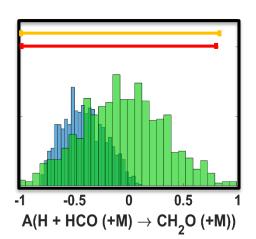
Questions?





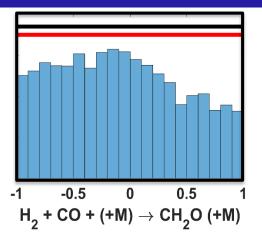


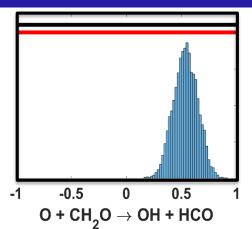


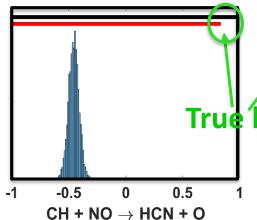


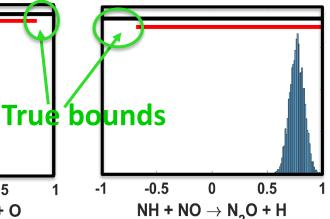
Test condition:

- 45 subspace dimension
- Polytope with sample bound
- 10⁴ facets for the polytope
- 1000 sample points
- [-1, 1] are prior uncertainties



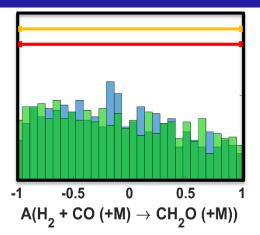


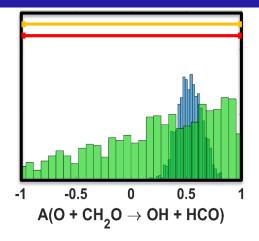


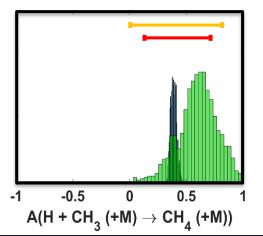


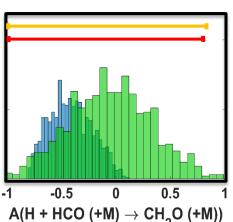
Test condition:

- 45 subspace dimension
- Polytope with sample bound
- 10⁴ facets for the polytope
- 1000 sample points
- [-1, 1] are prior uncertainties









Test condition:

- 45 subspace dimension
- Polytope with sample bound
- 10⁴ facets for the polytope
- 1000 sample points
- [-1, 1] are prior uncertainties

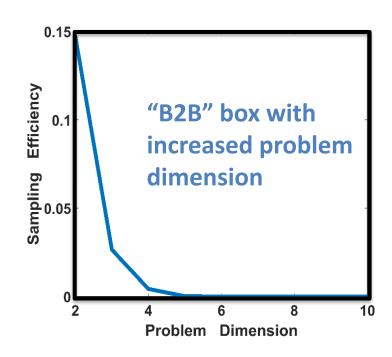
Rejection sampling with box

Procedure:

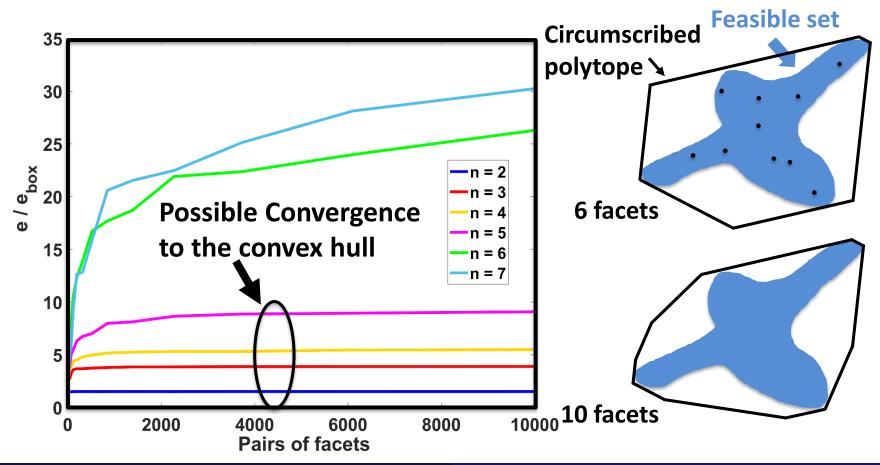
- find a bounding box
 - available from B2B
- generate uniformly distributed samples in the box as candidates
- reject the points outside of feasible set

Pros & Cons

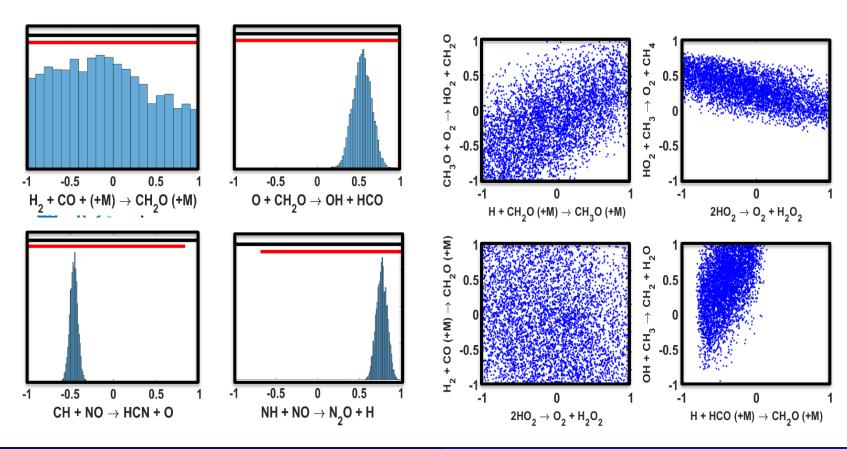
- provably uniform in the feasible set
- practical in low dimensions



Rejection sampling with polytope



Conclusion



Heuristic approximation strategy (continued...)

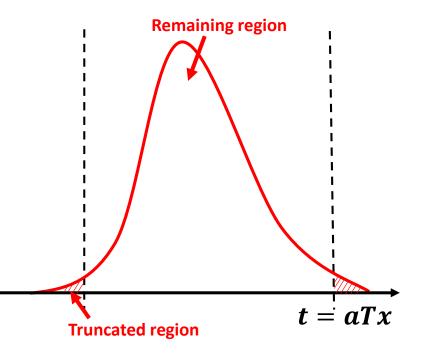
 Consider the statistical quality of samples returned with heuristic approximation by estimating the difference in its statistical inference of a function Q(x).
 Denote the truncated and remaining area as T and R, then

$$d = \left| \int_{\mathcal{R}} Q(x)p'(x)dx - \int_{\mathcal{S}} Q(x)p(x)dx \right|$$

$$\leq (c-1)\hat{Q_{\mathcal{R}}} \int_{\mathcal{R}} p(x)dx + \hat{Q_{\mathcal{T}}} \int_{\mathcal{T}} p(x)dx$$

$$= (\hat{Q_{\mathcal{R}}} + \hat{Q_{\mathcal{T}}}) \int_{\mathcal{T}} p(x)dx \leq \hat{Q_{\mathcal{S}}} \int_{\mathcal{T}} p(x)dx$$

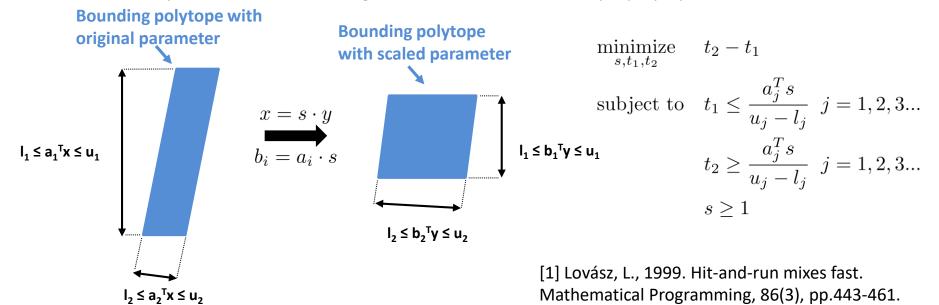
 Hypothesis. If the target distribution has a small integrated probability in the truncated region, the inferring difference of the returned samples are likely to be small compared to the target distribution



Rejection sampling with polytope (continued...)

Parameter scaling

- scales the parameters so the polytope with the scaled parameters is more isotropic
- a 2-D example is given in the following figure for illustration
- RW performs better (converges faster) with a more isotropic polytope[1]

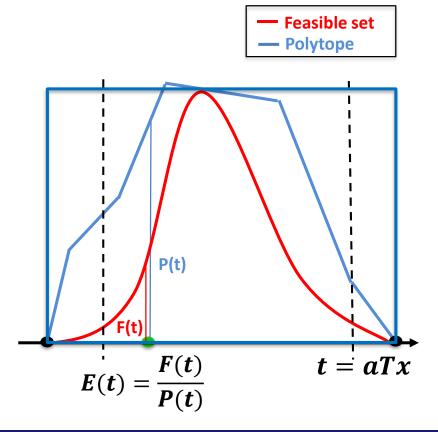


Acknowledgement

We gratefully acknowledge the support by U.S. Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002375.

Heuristic approximation strategy (continued...)

- A sufficient condition that the sampling efficiency will increase with the heuristic approximation is derived:
- Hypothesis. Parameterize the direction as $t=a^Tx$ and specify the efficiency density function E(t) as $E(t)=\int_{a^Tx=t}I(F)dx/\int_{a^Tx=t}I(P)dx$. Denote the truncated region as $\mathbb{R}^{\frac{R}{2}}$ and the remaining region as \mathbb{R} . If $\int_{t\in\mathcal{R}}E(t)dt/\int_{t\in\mathcal{R}}dt>\int_{t\in\mathcal{T}}E(t)dt/\int_{t\in\mathcal{T}}dt$ the sampling efficiency will increase with the approximation
- Conjecture. If the target distribution approximates a high-weight center, low-weight tail shape along the directions selected for heuristic approximation, then the efficiency is likely to increase.



Motivation of uniform sampling of the feasible set

- We don't know the distribution of returned points if the feasible set is not convex (and in general it isn't).
- Only qualitative conclusions can be made.
- To make the analysis quantitatively valid, we assume the uniform distribution of the feasible set.
- This is also the posterior distribution from Bayesian method if we assume uniform prior distributions on both parameter and measurement uncertainties

University of California, Berkeley

Generate uniform samples of a feasible set

and its application in uncertainty quantification

Random walk application in DLR dataset

Test condition:

- 55 parameters
- 244 constraints
- 10⁶ samples
- 2-D projection
- Bounds are prior

